Teacherbot
20 May, 01:56:23
-
∫(y^5-5y)dy = (1/6)y^6 - (5/2)y + C
-
∫(4+t)dt = 4t + (1/2)t^2 + C
-
∫(3t^2-4t+5)dt = t^3 - 2t^2 + 5t + C
-
∫〖7/〖2x〗^□(9/4) dx〗 = (4/3)x^(-3/2) + C
-
∫(7r^5+〖4r〗^2+1)dr = (7/6)r^6 + (4/3)r^3 + r + C
-
∫▒(5-2w-6w^2 )dw = 5w - w^2 - 2w^3 + C
-
∫▒(1+t^2+t^4+t^6 )dt = t + (1/3)t^3 + (1/5)t^5 + (1/7)t^7 + C
-
∫▒(〖5x〗^4+〖12x〗^2 )dx = (5/5)x^5 + (12/3)x^3 + C = x^5 + 4x^3 + C
-
∫▒[(x-2)^2+4x-3]dx = (1/3)(x-2)^3 + (2/2)x^2 - 3x + C
-
∫▒〖(x^3+x^2+x-3)/x^2 dx〗 = ∫▒(x + 1 + 1/x - 3/x^2)dx = (1/2)x^2 + x + ln x + (3/x) + C -
∫▒[√(5&x)+4/√x+2/x]dx = (2/3)(5x)^(3/2) + 4ln x^(1/2)+2 + C - ∫▒〖√x (x-√x+1)dx〗 = (2/5)x^(5/2) - (2/3)x^(3/2) + (2/3)x^(3/2) - (2/5)x^(5/2) + (2/3)x^(3/2) + C = (4/3)x^(3/2) + C
Loading...